3.64 \(\int \frac{1}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}} \, dx\)

Optimal. Leaf size=48 \[ \frac{\sqrt{\frac{2}{33}} \sqrt{5-2 x} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right ),\frac{1}{3}\right )}{\sqrt{2 x-5}} \]

[Out]

(Sqrt[2/33]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/Sqrt[-5 + 2*x]

________________________________________________________________________________________

Rubi [A]  time = 0.0139663, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {121, 119} \[ \frac{\sqrt{\frac{2}{33}} \sqrt{5-2 x} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right )|\frac{1}{3}\right )}{\sqrt{2 x-5}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(Sqrt[2/33]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/Sqrt[-5 + 2*x]

Rule 121

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[(b*(c
+ d*x))/(b*c - a*d)]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[(b*c)/(b*c - a*d) + (b*d*x)/(b*c - a*d)]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}} \, dx &=\frac{\left (\sqrt{\frac{2}{11}} \sqrt{5-2 x}\right ) \int \frac{1}{\sqrt{2-3 x} \sqrt{\frac{10}{11}-\frac{4 x}{11}} \sqrt{1+4 x}} \, dx}{\sqrt{-5+2 x}}\\ &=\frac{\sqrt{\frac{2}{33}} \sqrt{5-2 x} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{1+4 x}\right )|\frac{1}{3}\right )}{\sqrt{-5+2 x}}\\ \end{align*}

Mathematica [A]  time = 0.10906, size = 79, normalized size = 1.65 \[ -\frac{\sqrt{\frac{3 x-2}{4 x+1}} (4 x+1) \sqrt{\frac{4 x-10}{44 x+11}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{11}{3}}}{\sqrt{4 x+1}}\right ),3\right )}{\sqrt{2-3 x} \sqrt{2 x-5}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

-((Sqrt[(-2 + 3*x)/(1 + 4*x)]*(1 + 4*x)*Sqrt[(-10 + 4*x)/(11 + 44*x)]*EllipticF[ArcSin[Sqrt[11/3]/Sqrt[1 + 4*x
]], 3])/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]))

________________________________________________________________________________________

Maple [C]  time = 0.013, size = 36, normalized size = 0.8 \begin{align*} -{\frac{\sqrt{11}}{11}{\it EllipticF} \left ({\frac{2}{11}\sqrt{22-33\,x}},{\frac{i}{2}}\sqrt{2} \right ) \sqrt{5-2\,x}{\frac{1}{\sqrt{2\,x-5}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2-3*x)^(1/2)/(2*x-5)^(1/2)/(4*x+1)^(1/2),x)

[Out]

-1/11*EllipticF(2/11*(22-33*x)^(1/2),1/2*I*2^(1/2))*(5-2*x)^(1/2)*11^(1/2)/(2*x-5)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{4 \, x + 1} \sqrt{2 \, x - 5} \sqrt{-3 \, x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{4 \, x + 1} \sqrt{2 \, x - 5} \sqrt{-3 \, x + 2}}{24 \, x^{3} - 70 \, x^{2} + 21 \, x + 10}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)/(24*x^3 - 70*x^2 + 21*x + 10), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 - 3 x} \sqrt{2 x - 5} \sqrt{4 x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2-3*x)**(1/2)/(-5+2*x)**(1/2)/(1+4*x)**(1/2),x)

[Out]

Integral(1/(sqrt(2 - 3*x)*sqrt(2*x - 5)*sqrt(4*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{4 \, x + 1} \sqrt{2 \, x - 5} \sqrt{-3 \, x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)